Correction du concours blanc de mathématiques

Partie I : Algèbre

1. On a
$$X^3 - 3X + 1 = (X^2 + X - 2)(X - 1) - 1$$
 d'où $q(X^3 - 3X + 1) = X^2 + X - 2$.

- 2. Soient $P_1, P_2 \in \mathbb{R}_4[X]$ et $\lambda \in \mathbb{R}$. Notons Q_1 (resp. Q_2) et R_1 (resp. R_2) le quotient et le reste de la division euclidienne de P_1 (resp. P_2) par X-1. On a $P_1=Q_1(X-1)+R_1$ et $P_2=Q_2(X-1)+R_2$ i.e. $P_1+\lambda P_2=(Q_1+\lambda Q_2)(X-1)+R_1+\lambda R_2$. De plus, $\deg(R_1+\lambda R_2) \leqslant \max(\deg(R_1),\deg(\lambda R_2)) < 1 = \deg(X-1)$. Par unicité du quotient dans la division 2 euclidienne, le quotient de $P_1+\lambda P_2$ par X-1 est $Q_1+\lambda Q_2$, autrement dit, $Q_1+\lambda P_2=Q_1+\lambda Q_2=Q_1+\lambda Q_1+\lambda Q_2=Q_1+\lambda Q_1+\lambda Q_2=Q_1+\lambda Q_1+\lambda Q_2=Q_1+\lambda Q_1+\lambda Q_2=Q_1+\lambda Q_1+\lambda Q_1+\lambda Q_1+\lambda Q_2=Q_1+\lambda Q_1+\lambda Q_1+$
- 3. On note $\mathscr{C} = (1, X 1, X^2 1, X^3 1, X^4 1)$.
 - (a) La famille $\mathscr C$ est une famille libre (car constituée de polynômes non nuls et échelonnés en degré) de $\mathbb R_4[X]$ constituée de $5 = \dim(\mathbb R_4[X])$ éléments. Ainsi, $\mathscr C$ est une base de $\mathbb R_4[X]$.

(b) Soit
$$n \in \mathbb{N}^*$$
. $X^n - 1 = (X - 1) \sum_{k=0}^{n-1} X^k$. /1

(c)
$$q(1) = 0$$
, $q(X - 1) = 1$, $q(X^2 - 1) = X + 1$, $q(X^3 - 1) = X^2 + X + 1$ et $q(X^4 - 1) = X^3 + X^2 + X + 1$.

- 4. (a) $\operatorname{Im}(q) = \operatorname{Vect}(q(\mathscr{C})) = \operatorname{Vect}(1, X+1, X^2+X+1, X^3+X^2+X+1)$. La famille $(1, X+1, X^2+X+1, X^3+X^2+X+1)$ est donc génératrice de $\operatorname{Im}(q)$. De plus, elle est libre (car constituée de polynômes non nuls et échelonnés en degré) donc c'est une base de $\operatorname{Im}(q)$.
 - (b) D'après le théorème du rang, $\dim(\operatorname{Ker}(q)) = 5 \dim(\operatorname{Im}(q)) = 1$. Or $1 \in \operatorname{Ker}(q)$. D'où $\operatorname{Ker}(q) = \operatorname{Vect}(1)$.
 - (c) On remarque que $1 \in \text{Im}(q) \cap \text{Ker}(q)$ ainsi Im(q) et Ker(q) ne sont pas en somme directe et donc ils ne sont pas supplémentaires dans $\mathbb{R}_4[X]$.
- 5. On note \mathcal{B} la base canonique de $\mathbb{R}_4[X]$

(a)
$$\operatorname{Mat}_{\mathscr{C},\mathscr{B}}(q) = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
 (b) $P_{\mathscr{B}}^{\mathscr{C}} = \begin{pmatrix} 1 & -1 & -1 & -1 & -1 & -1 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$ et $P_{\mathscr{C}}^{\mathscr{B}} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$.

(c) On a
$$\operatorname{Mat}_{\mathscr{B}}(q) = \operatorname{Mat}_{\mathscr{C},\mathscr{B}}(q)P_{\mathscr{C}}^{\mathscr{B}} = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

- (d) \star Mat_{\$\mathscr{B}\$}(q) est triangulaire supérieure dont un des coefficients diagonaux est nul.
 - $\star \operatorname{Ker}(q) \neq \{0\}$ donc q n'est pas un isomorphisme. Ainsi $\operatorname{Mat}_{\mathscr{B}}(q)$ n'est pas inversible.

6. Soit
$$P = a_0 + a_1 X + a_2 X^2 + a_3 X^3 + a_4 X^4 \in \mathbb{R}_4[X]$$
.

$$\operatorname{Mat}_{\mathscr{B}}(q(P)) = \operatorname{Mat}_{\mathscr{B}}(q)\operatorname{Mat}_{\mathscr{B}}(P) = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} = \begin{pmatrix} a_1 + a_2 + a_2 + a_3 + a_4 \\ a_2 + a_3 + a_4 \\ a_3 + a_4 \\ a_4 \\ 0 \end{pmatrix}$$

D'où
$$q(P) = a_1 + a_2 + a_3 + a_4 + (a_2 + a_3 + a_4)X + (a_3 + a_4)X^2 + a_4X^3$$
.

Partie II: Probabilités

Soit $p \in [0, 1]$ et soit $n \in \mathbb{N}^*$.

Jeu n°1 : on note (Ω, P) l'espace probabilisé qui modélise cette expérience aléatoire et N la variable aléatoire égale au nombre d'as obtenus à l'issue des n tirages. Pour tout $i \in [\![1,n]\!]$, notons P_i l'évènement : "obtenir pile au i-ième tirage" et A_i l'évènement : "obtenir un as au i-ème tirage".

- 1. La famille $(P_i, \overline{P_i})$ est un système complet d'évènements. D'après la formule des probabilités totales, on obtient $p_a = P(A_i) = P_{P_i}(A_i)P(P_i) + P_{\overline{P_i}}(A_i)P(\overline{P_i}) = \frac{1}{4}p + \frac{1}{2}(1-p) = \frac{1}{2} \frac{1}{4}p = \frac{1}{4}(2-p)$.
- 2. La variable aléatoire N compte le nombre de succès lors de n épreuves de Bernoulli indépendantes. Ainsi $N \sim \mathcal{B}(n, p_a)$.

3. Ainsi
$$E_1 = E(N) = np_A$$
. /1

/1

Jeu n°2 : on garde les mêmes notations que pour le jeu n°1. De plus, pour tout $i \in [1, n]$, on définit la variable aléato X_i qui vaut 1 si on a obtenu un as au i -ème tirage et 0 sinon, et on note $p_i = P(X_i = 1)$.	ire
4. Soit $i \in [1, n-1]$. (a) En procédant de la même façon que dans la question 1., on obtient $P_{(X_{i}=1)}(X_{i+1}=1) = \frac{1}{2}p + \frac{1}{4}(1-p) = \frac{1}{4}(1+p)$	- p)
et $P(X_{i=0})(X_{i+1}=1) = \frac{1}{4}p + \frac{1}{2}(1-p) = \frac{1}{4}(2-p).$	1
(b) La famille $((X_i = 1), (X_i = 0))$ est un système complet d'évènements. D'après la formule des probabilités total $p_{i+1} = P(X_{i+1} = 1) = P(X_{i+1} = 1)P(X_{i+1} = 1)P(X_i = 1) + P(X_{i+1} = 1)P(X_i = 0) = \frac{1}{4}(1+p)p_i + \frac{1}{4}(2-p)(1-p_i)$	
1(9 1) + 1(9)	1
(c) Soit $x \in \mathbb{R}$, $x = \frac{1}{4}(2p-1)x + \frac{1}{4}(2-p) \iff (5-2p)x = 2-p \iff x = \frac{2-p}{5-2p}$. Notons $c = \frac{2-p}{5-2p}$. La su	$it\epsilon$
$(p_k-c)_{k\in\mathbb{N}^*}$ est donc géométrique de raison $\frac{2p-1}{4}$ d'où $p_i=\left(\frac{2p-1}{4}\right)^{i-1}(p_1-c)+c=\frac{2-p}{5-2p}\left(1-\left(\frac{2p-1}{4}\right)^i\right)$	1
5. On a $N = \sum_{i=1}^{n} X_i$. D'où $E_2 = E(N) = \sum_{i=1}^{n} E(X_i) = \sum_{i=1}^{n} P(X_i = 1) = \sum_{i=1}^{n} p_i = \frac{2-p}{5-2p} \left(n - \frac{2p-1}{4} \left(\frac{1 - \left(\frac{2p-1}{4} \right)^n}{1 - \frac{2p-1}{4}} \right) \right)$.	1
Partie III : Analyse	
1. Notons g la fonction $g: t \mapsto t + \sin(t)$ définie sur \mathbb{R} . La fonction g est de classe \mathscr{C}^{∞} et $g'(t) = 1 + \cos(t) \geqslant 0$ potention $t \in \mathbb{R}$. De plus, on remarque que g' s'annule uniquement en des points isolés d'où g est strictement croissante. F	
	1
2. Soit $x \in \mathbb{R}_+^*$, pour tout $t \in [x, 2x]$, $g(t) \neq 0$ donc $f(x)$ est bien définie. Soit $x \in \mathbb{R}^*$, pour tout $t \in [2x, x]$, $g(t) \neq 0$ do	nc
	1
3. Soit $x \in \mathbb{R}^*$, en utilisant le changement de variable de classe \mathscr{C}^1 suivant $u = -t$, on obtient	
$f(-x) = \int_{-x}^{-2x} \frac{1}{t + \sin(t)} dt = \int_{x}^{2x} \frac{1}{-u + \sin(-u)} (-du) = \int_{x}^{2x} \frac{1}{u + \sin(u)} du = f(x). \text{ Donc } f \text{ est paire.}$	1
4. Notons $\varphi: x \mapsto \int_{1}^{2\pi} g(t) dt$. Comme g est continue sur \mathbb{R}_{+}^{*} , d'après le théorème fondamental de l'analyse, φ est dérival	ble
sur \mathbb{R}_+^* et $\varphi' = g$. On remarque avec la relation de Chasles que pour tout $x \in \mathbb{R}_+^*$, $f(x) = \varphi(2x) - \varphi(x)$. Comme $g \in \mathbb{R}_+$ de classe \mathscr{C}^{∞} , φ et f le sont également. De plus, pour tout $x \in \mathbb{R}_+^*$, $f'(x) = 2g(2x) - g(x) = \frac{2}{2x + \sin(2x)} - \frac{1}{x + \sin(x)}$ is	est i.e.
$f'(x) = \frac{1}{x + \sin(x)\cos(x)} - \frac{1}{x + \sin(x)} = \frac{\sin(x)(1 - \cos(x))}{(x + \sin(x))(x + \sin(x)\cos(x))}.$	1
5. Soit $x \in \mathbb{R}_+^*$. D'après la question précédente, $\operatorname{signe}(f'(x)) = \operatorname{signe}(\sin(x))$. D'où $\operatorname{signe}(\cos'(x)) = -\operatorname{signe}(f'(x))$.	Dε
plus, f' s'annule uniquement en des points isolés, d'où f a des variations opposées à celle de cosinus sur \mathbb{R}_+^* .	1
6. On a vu que g est strictement positive sur \mathbb{R}_+^* . Par croissance de l'intégrale, f est strictement positive sur \mathbb{R}_+^* .	1
V 7 1 3 C	1
J_x J_x J_x J_x	1
	1
(d) Soit $x \in [2, +\infty[$, $\left f(x) - \int_{x}^{2x} \frac{1}{t} dt \right \leqslant \int_{x}^{2x} \frac{2}{t^{2}} dt = \frac{1}{x} d$ 'où $f(x) = \underbrace{f(x) - \int_{x}^{2x} \frac{1}{t} dt}_{t} + \underbrace{\int_{x}^{2x} \frac{1}{t} dt}_{x \to +\infty} \ln(2) $	1
8. (a) $t + \sin(t) = 2t + o(t)$ d'où $t + \sin(t) \sim 2t$ d'où $\frac{1}{t + \sin(t)} \sim \frac{1}{2t}$.	1
(b) Posons $a = \frac{1}{2}$, pour tout $t \in \mathbb{R}^*_+$, $\frac{1}{t+\sin(t)} = \frac{1}{2t} + \frac{1}{t+\sin(t)} - \frac{1}{2t}$. Or $\frac{1}{t+\sin(t)} - \frac{1}{2t} = o(\frac{1}{t})$ donc il existe $\varepsilon \in \mathscr{C}(\mathbb{R}^*_+, \frac{1}{t+\sin(t)}) = \frac{1}{2t} + \frac{1}{t+\sin(t)} = \frac{1}{2t}$.	
(1) (1) (2) (3) (4) (4) (5) (7) (7) (7) (7)	1
(c) Soit $\alpha \in \mathbb{R}_{+}^{*}$. Il existe $\eta_{\alpha} \in \mathbb{R}_{+}^{*}$ tel que, pour tout $t \in]0, 2\eta_{\alpha}], \varepsilon(t) \leq \alpha$ d'où pour tout $x \in]0, \eta_{\alpha}], [x, 2x] \subset]0, 2\eta$	
et ainsi $\left \int_{-\infty}^{2x} \frac{\varepsilon(t)}{t} dt \right \leqslant \int_{-\infty}^{2x} \frac{ \varepsilon(t) }{t} dt \leqslant \alpha \left[\ln(t) \right]_{x}^{2x} = \alpha \ln(2) \leqslant \alpha.$	
$\int_{-2x}^{2x} \left \int_{-2x}^{2x} \left \int_{-2x}^{2x}$	1
9. Comme f est paire, $f(x) \xrightarrow[x \to 0]{\ln(2)}$. De plus, $f'(x) \xrightarrow[x \to 0+]{x \to 0+} \frac{x \times \frac{x^2}{2}}{2x \times 2x} \xrightarrow[x \to 0+]{x}$, par parité de f , $f'(x) \xrightarrow[x \to 0]{} 0$. D'après les théorèm	
$x \neq 0$ $x \neq 0$	
de prolongement par continuité et de la limite de la dérivée, f se prolonge en une fonction de classe \mathscr{C}^1 sur \mathbb{R} .	2